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ABSTRACT
Extensive temporal and spatial monitoring data provide an opportunity to identify the drivers of ecosystem change and to under-
stand spatial relationships useful to conservation and management. Such data can potentially overcome the considerable intrin-
sic variability present in sampling and justify the cost of sustained monitoring. In this study, the temporal and spatial structure 
and trends in the mobile invertebrate and fish assemblage of the Peconic Estuary were identified. Data were obtained primarily 
from a small mesh trawl survey conducted by the New York State Department of Environmental Conservation from 1987–2020 
at 76 locations distributed throughout the system, supplemented by chlorophyll data and regional climate indices. A set of multi-
variate statistical tools, including K-means cluster analysis, redundancy analysis, and multiscale ordination, were applied to the 
data set in a complementary way. Distinctly different drivers for temporal and spatial patterns were found. Abrupt community 
shifts on a decadal time scale occurred, including a regime shift in 1999–2000, and were driven by changes in regional climate 
factors as indexed by the unlagged and lagged Atlantic Multidecadal Oscillation and North Atlantic Oscillation. Spatially distinct 
habitats and assemblages were identified, separating eastern, inshore, and offshore regions of the system. These were differen-
tiated by local conditions in bottom salinity, water depth and depth gradient, DO percent saturation, and water transparency. 
Each of these regions responded to the climate drivers in a similar way. Notably, annual bottom temperature and chlorophyll a 
were never found to be effective in explaining community variation. Overall, the results of this study suggest that, given the time 
lags in response, climate-induced changes in the system can be anticipated by continued monitoring and that conservation and 
management actions can be applied system-wide and not restricted to specific areas.

1   |   Introduction

Long-term and extensive monitoring series of survey data pro-
vide an opportunity to understand ecosystem structure and 
phenomena that would otherwise be unnoticed or at best un-
explained (Nygård et  al.  2016). To be effective, monitoring 

surveys must account for the considerable intrinsic variability in 
sampling to identify patterns in the data. As an example of the 
magnitude of this variability, Flanagan et al.  (2018) found that 
36%–59% of the total variation in benthic faunal sampling was 
due to patchiness, i.e., variation at a scale below the sampling 
interval. This small-scale heterogeneity is due to factors such as 
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sampling error, measurement error, and fine-scale heterogeneity 
from biotic, abiotic, and anthropogenic processes (Legendre and 
Legendre 2012). Detecting change may require decades of data, 
dozens of measurements, and accessory data on potential driv-
ers (Hewitt and Thrush 2019), justifying the value of sustained 
monitoring.

The Peconic Estuary, located between the North and South forks 
of Long Island, New York, USA (Figure  1), was recognized as 
an Estuary of National Significance in 1993 (Peconic Estuary 
Partnership 2020). The estuary is temperate in nature and dis-
plays a high degree of seasonality. Some species of finfish per-
manently reside in the estuary, but many species undertake, 
sometimes long, migrations to use the estuary as a spawn-
ing, nursery, or feeding ground (Perlmutter et  al. 1956, Buckel 
et al. 1999, Thorrold et al. 2001). The depth across the estuary 
ranges from approximately 1.5 m in the west (Flanders Bay) of 
the estuary to approximately 29 m towards the eastern region 
(Shelter Island Sound) (Hardy 1976). The faunal and floral as-
semblages across the estuary are very diverse and provide hab-
itat for a large number of endangered and/or locally protected 
species (Hornstein 2020). The different regions of the estuary 
(deep water, shallow water, intertidal), diverse sediment types, 
and the presence of seagrasses (most notably eelgrass Zostera 
marina) increase species richness of local and migratory fish 
and invertebrate species and also provide an optimal habitat for 
spawning and nursery grounds (Hardy  1976; Peconic Estuary 
Partnership 2020). The sediment type found across the estuary 
varies from sandy or gravelly sand bottom to a more clayey silt 
and/or silty clay bottom (Coch  2019; Cerrato and Maher 2007; 
Cerrato et al. 2009, 2010; Katuna 1974).

Beginning in 1987, the New York State Department of 
Environmental Conservation (NYSDEC) has conducted a 

small mesh trawl survey for finfish and mobile invertebrates 
in the Peconic Estuary. This monitoring study not only col-
lects faunal data but also tow-specific bottom temperature, 
salinity, dissolved oxygen, water depth, and Secchi depth. The 
survey collects on average about 366 trawl samples every year 
during the period from late April to early November. Coupled 
with other monitoring data available for the Peconics system 
(e.g., chlorophyll a) and regional climate indices (e.g., Atlantic 
Multidecadel Oscillation index), the combined data set pro-
vides a rare opportunity to characterize the structure and scale 
of variation, both temporally and spatially, in an important 
ecosystem.

The aim of this research was to assess the temporal and spa-
tial structure of the Peconic Estuary community of finfish and 
mobile invertebrates during the period 1987 to 2020 and to 
identify the principal environmental drivers that likely play a 
critical role in creating and maintaining this structure. A com-
plementary suite of multivariate statistical techniques cen-
tered on redundancy analysis (RDA) was used. Data analysis 
in this study was designed to take advantage of the extensive 
monitoring data set to identify whether changes in commu-
nity structure have occurred over time, whether changes have 
been gradual or abrupt, whether they have occurred through-
out the system or in restricted areas, and whether the principal 
drivers of community structure operate at a local or regional 
scale. Characterizing the structure and scale of variation in the 
fish and mobile invertebrate community and its relationship 
with the environment has obvious consequences to conser-
vation, resource management, and ecosystem services, as the 
estuary is an important breeding ground for many fish and in-
vertebrate species and is already threatened by anthropogenic 
environmental degradation (Abruzzo 2015; Hardy 1976; Lewis 
et al. 1997).

FIGURE 1    |    Sampling grid units in the Peconic Estuary, Long Island, New York, USA. Grid unit 59 was removed from data analysis because of 
low sampling frequency.
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2   |   Materials and Methods

2.1   |   Survey and Data Collection

The New York State Department of Environmental Conservation 
(NYSDEC) has conducted a fishery-independent small mesh 
trawl survey for finfish and mobile invertebrates in the Peconic 
Estuary System since 1987. The survey area consists of Flanders 
Bay, Great Peconic Bay, Little Peconic Bay, and several smaller 
bays (Southold Bay, Noyack Bay, and Shelter Island Sound) bor-
dering Shelter Island but not including the North and South 
channels around Shelter Island. The allocation of stations is 
based on 77 1-min latitude and 1-min longitude sampling grid 
units (~1.85 × 1.41 km) (Figure 1). Each week from May through 
October, the survey targeted 16 randomly chosen grid units, 
with annual start dates beginning late April and some end dates 
spilling over into early November. Exceptions to this design plan 
included no trawls after mid-July in 2005, none until mid-July in 
2006, none before August in 2008, none in May 2010, and none 
before late June 2020. Between 1987 and 2020, a total of 12,461 
samples were collected.

Samples were collected using a 4.9 m semi-balloon otter trawl 
with a 2.5 cm mesh body and a 1 cm codend liner. The trawl 
net has a 5.2 m head rope and 6.4 m bottom rope with small 
floats, as well as a 0.5 cm tickler chain attached to the bottom 
rope (Nunnenkamp  2020; Weber et  al.  1998). Tows were set 
for 10 min at a target speed of 2.5 knots (Nunnenkamp 2020). 
Tows started from the approximate center of each grid unit 
and were towed towards a random location in a straight line. 
At the start of each tow, bottom temperature (°C), salinity 
(ppt, practical salinity units), dissolved oxygen (mg/L), depth 
(m) and Secchi depth (m) were recorded. Depth was also re-
corded at the end of the tow, allowing the calculation of the 
change in depth during a tow. All species contained in the tow 
were identified and counted. Grid unit 59 was removed from 
the survey because of problems collecting samples at that lo-
cation. Overall, every remaining grid unit was trawled an av-
erage of 4.8 (±0.52 SD) times per year, although 21 grid units 
had 1–2 years with no sampling and 4 grid units had 3–5 years 
of missing data.

Environmental data from the trawl survey was supplemented 
with climatic indices and Peconic Estuary data from the Suffolk 
County Department of Health Services. Trawl data are available 
at data.​ny.​gov (data.​ny.​gov/d/​abww-​z5t5 and /d/​9if6-​dz5v). The 
Atlantic Multidecadal Oscillation Index (AMO) and the North 
Atlantic Oscillation Index (NAO) were obtained from National 
Oceanic and Atmospheric Administration websites (psl.​noaa.​
gov/​data/​times​eries/​​AMO/ and www.​ncdc.​noaa.​gov/​telec​
onnec​tions/​​nao/​). Chlorophyll data from a set of water qual-
ity monitoring stations was obtained from the Suffolk County 
Department of Health Services, Office of Ecology at the follow-
ing link: gis.​suffo​lkcou​ntyny.​gov/​portal/​home/​item.​html?​id=​
5d4b5​3ec44​20421​9a8da​685f1​859e096.

2.2   |   Data Processing

Catch per unit effort (CPUE) data were trimmed to remove 
rare species. In this study, a species was considered rare and 

was deleted if it was caught less than a total of 10 times over 
the course of the survey. This criterion addresses the caution 
by Poos and Jackson (2012) concerning the impact of rare spe-
cies, since so few occurrences of a species over such a large 
number of trawl samples would not impact ecological patterns 
in the multivariate analyses. A total of 54 rare species were 
removed, resulting in a total of 69 species retained in the data 
set. In addition, some species were combined into their respec-
tive broader functional groups because of the uncertainty in 
making consistently accurate identifications. These included 
spider crabs (Libinia spp.), herrings (Clupeidae spp.), ancho-
vies (Anchoa spp.), and squid (Cephalopoda spp.). Annual 
CPUE was calculated on species and species groups prior to 
any further processing.

Annual average CPUE data were Hellinger transformed 
(Legendre and Gallagher  2001) prior to multivariate analysis. 
This transformation is particularly useful for data sets with 
many 0 counts, and it down-weights highly abundant species, 
preventing them from dominating the analysis. In addition, 
when combined with Euclidean distance, the distance metric 
utilized by all the multivariate analyses in this study, this trans-
formation provides an intuitive and ecologically reasonable 
measure of compositional dissimilarities in community struc-
ture (Legendre and Gallagher 2001). A preliminary detrended 
correspondence analysis on the CPUE data confirmed that the 
gradients along each axis were below 2.5 SD (standard deviation 
of species turnover), allowing linear rather than unimodal mul-
tivariate methods (ter Braak and Smilauer 2002).

Environmental data used in the multivariate analyses were 
either calculated as annual averages or derived from the avail-
able data. Annual averages for the trawls in each grid unit 
were calculated from bottom temperature (Temp;°C), bot-
tom salinity (Sal; ppt), bottom DO (DO; mg/L), DO percent 
saturation (DOSat; %), depth (Depth; m), and Secchi depth 
(Secchi; m) recorded at the start of each tow. Change in depth 
(delDepth; m) was taken as the average of the difference in 
the tow start and end depths. Measures derived from the 
data also included the percent of measurements during the 
year with DO < 3 mL/L (PerHyp), with DO saturation > 115% 
(PerGrSat), and that were in the highest (PerHighT) or low-
est (PerLowT) 10% of Temp measurements for all years. Total 
chlorophyll a (Chla; μg/L) was estimated for each trawl from 
the nearest available water quality sample from the Suffolk 
County Department of Health Services monitoring program 
and calculated as an annual average of the trawls in the grid 
unit. The average annual AMO index was calculated using all 
months since it is already a large scale, temporally averaged 
time series (Enfield et  al.  2001; Trenberth and Shea  2006). 
The average annual winter (January, February, March) NAO 
index was used since atmospheric variability over the North 
Atlantic is most prominent during this time period (Hurrell 
et  al.  2003). Since marine ecosystems might not instanta-
neously respond to large-scale environmental variables (Báez 
et al. 2021), 1- and 2-year lags for bottom Temp (BT-1, BT-2), 
NAO (NAO-1, NAO-2), and AMO (AMO-1, AMO-2) were also 
included in the environmental data set. The forward selection 
process described in the next section can distinguish which, 
if any, of these time lags explain the largest amount of faunal 
variation.

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71637 by T

est, W
iley O

nline L
ibrary on [21/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://data.ny.gov
http://data.ny.gov/d/abww-z5t5
http://9if6-dz5v
http://psl.noaa.gov/data/timeseries/AMO
http://psl.noaa.gov/data/timeseries/AMO
http://www.ncdc.noaa.gov/teleconnections/nao/
http://www.ncdc.noaa.gov/teleconnections/nao/
http://gis.suffolkcountyny.gov/portal/home/item.html?id=5d4b53ec44204219a8da685f1859e096
http://gis.suffolkcountyny.gov/portal/home/item.html?id=5d4b53ec44204219a8da685f1859e096


4 of 15 Ecology and Evolution, 2025

2.3   |   Statistical Methods

To capture the temporal and spatial patterns in the finfish and 
mobile invertebrate community, the data were analyzed using 
a complementary set of statistical techniques. K-means clus-
ter analysis was used to determine whether temporal or spa-
tial groups with similar community characteristics could be 
identified in the data set. Redundancy analysis (RDA) was the 
principal means of identifying the environmental drivers of 
community structure. Multiscale ordination (MSO) was used as 
a diagnostic tool to evaluate scale dependence in the identified 
biotic-environmental RDA relationship, to indicate the possibil-
ity of missing environmental drivers, to measure the stability 
of residuals in the identified biotic-environmental relationship, 
and to assess the presence of temporal or spatial autocorrelation 
in the residuals. A univariate Spearman's rank order correlation 
was also performed on the mean annual CPUE of species vs. 
year to assess trends in catch across the 34-year survey period.

2.3.1   |   K-Means Cluster Analysis

K-means cluster analysis (Legendre and Legendre 1998) was 
carried out on the Euclidean distance matrix derived from 
Hellinger-transformed CPUE data. K-means is non-hierarchical 
and finds a range of groups from 2 to r, where r is an arbitrarily 
large number of groups. The CH index (Calinski and Harabasz 
1974), a multivariate F-statistic that compares the between-
cluster sum-of-squares to the within-cluster sum-of-squares, 
was used to evaluate each group solution and suggest the best 
partitioning of the data. K-means cluster analysis was carried 
out using the R library vegan (Oksanen et al. 2022). Because the 
CH index undervalues unequal size partitions (Borcard et  al. 
2011), Oksanen et  al.  (2022) recommends considering several 
groups near the maximum, and not just the one corresponding 
to the maximum, when groups are unequal in size.

2.3.2   |   Redundancy Analysis (RDA)

RDA is a multivariate direct gradient analysis technique that 
explicitly combines ordination of samples based on species 
catch data with regression on the environmental data (Jongman 
et  al.  1995). A forward selection process was used to identify 
environmental variables to include in the regression model 
(Jongman et al. 1995). At each step in the process, the environ-
mental variable explaining the largest amount of faunal vari-
ation was selected and its effect removed before the next best 
fitting variable was considered. This process of adding environ-
mental variables was continued until the model with the smallest 
Akaike Information Criterion (AICc) was identified (Burnham 
and Anderson 2002; Hastie et al. 2009). RDA analyses were con-
ducted using the software Canoco 4.5 (Microcomputer Power, 
Ithaca NY) (ter Braak and Smilauer 2002) and the vegan package 
of R (R Foundation for Statistical Computing, Vienna, Austria).

To examine whether temporal changes in community structure 
were gradual or abrupt, and persistent, a change point analy-
sis was conducted with the mcp() function in the MCP library 
(Lindeløv 2020). An uninformative default prior was used in the 
Bayesian regression analysis, and the model was constructed as 

a change point between two levels. This analysis was carried out 
with sample scores along the first RDA axis vs. year. Rerunning 
the analysis using comparable scores from first principal com-
ponent analysis resulted in essentially an identical outcome and 
is not reported here.

2.3.3   |   Empirical Variograms and Multiscale 
Ordination (MSO)

The temporal and spatial structure of the species assemblage 
was examined by constructing an empirical variogram of the 
multivariate faunal data for each site (Wagner 2003):

where �(h) is the empirical semivariance of the faunal data at time 
interval or distance interval h, xia and xib are Hellinger transformed 
CPUE values for species i (i = 1 to p) in samples a and b, respec-
tively, and the inner summation is over all pairs of samples sepa-
rated by a time interval or geographic distance of approximately h. 
It should be noted that applying equation (1) to all pairs of samples, 
instead of a temporal or distance interval subset, yields s2, the total 
sample variance (Bachmaier and Backes 2008).

Interval increment sizes were chosen for interpretability with 
1-year increments for temporal and 2000 m, the approximate 
average distance to nearest neighbor grid units, for spatial. 
Semivariances at time or spatial intervals beyond half the max-
imum were not interpreted since not all samples can be used 
in the variance calculation (Wagner 2003, 2004). Specifically, 
samples in the center of a time series or study area cannot be 
paired with other samples when intervals are larger than half 
the maximum. This creates a bias that gets progressively worse 
as the interval size increases.

Multiscale ordination (MSO) extended the temporal and spatial 
structure analysis to examining biotic-environmental relation-
ships by inserting RDA regression results into the variogram 
(Wagner 2003, 2004, Wagner and Fortin 2005). It does this 
by partitioning the xia and xib pairs in Equation  (1) into fitted 
and residual parts 

(

x̂iafit + x̂iares
)

 and 
(

x̂ibfit + x̂ibres
)

, respectively. 
Substituting these into Equation (1) leads to:

The first two terms on the right-hand side are variograms of the 
fitted and residual values. The third term is twice the covariance 
between the fitted and residual differences for distance class h 
(Wagner 2003). Multivariate regression estimates of species-
environmental relationships were obtained from the forward 
selection, minimum AICc RDA solution, and variograms were 
created using the rda(), mso(), and msoplot() functions in the 
vegan package of R (R Foundation for Statistical Computing, 
Vienna, Australia). The code for mso() and msoplot() was cre-
ated and first published by Wagner (2004).

MSO provided diagnostic tools for the RDA results to evalu-
ate scale dependence in the biotic-environmental relationship, 

(1)�(h) =

p
∑

i= 1

1

2nh

∑

a,b ∣hab ≈h

(

xia−xib
)2

(2)�(h) = � fit(h) + � res(h) + �cross(h)
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stationarity of the residuals, and spatial autocorrelation in the 
residuals using methods in Wagner (2003). Scale dependence in 
the biotic-environmental relationship was tested by construct-
ing a Bonferroni corrected point confidence interval around �(h) 
and determining if the sum of the variograms � fit(h) + � res(h) lies 
wholly within it. If not, the species-environmental relationship 
is scale dependent. Stationarity of the residuals was examined 
by determining whether �res(h) reached a sill or stable level after 
short time or distance intervals and remained there over most 
of the interval range. Presence of a trend in �res(h) would indi-
cate that important environmental variables were missing in the 
RDA model. Spatial autocorrelation in the residuals was tested 
by a series of Bonferroni adjusted Mantel tests (Mantel 1967) 
between a Euclidean distance matrix formed by the residuals 
within a class interval and a temporal or geographic matrix for 
that interval. A significant outcome for a class interval would 
indicate that small scale autocorrelation due to biotic processes 
(Legendre 1993, Wagner 2004) was present at that interval class. 
The scale dependence and spatial autocorrelation analyses are 
built into the msoplot() function in the vegan package of R (R 
Foundation for Statistical Computing, Vienna, Australia).

2.3.4   |   Multivariate Approach

The multivariate techniques were applied to the spatial–tempo-
ral data set in stages. Data analysis initially focused on assess-
ing separately the spatially averaged temporal structure and the 
temporally averaged spatial structure in the data, and in iden-
tifying the environmental variables responsible for patterns in 
community structure. Building on these initial results, more 
spatial detail was added to evaluate the full assemblage com-
plexity in the Peconics data set. In all analyses, CPUE data were 
spatially or temporally averaged prior to applying the Hellinger 
transformation.

3   |   Results

3.1   |   Spatially Averaged Temporal Variability

Temporal analysis identified three coherent species assemblages 
related to changes in regional environmental factors. Examining 
annual variability after averaging across all grid units, the max-
imum CH index solution suggested by K-means cluster analysis 
separated the survey years into two distinct time periods (1987–
1999 and > 2000), with only two exceptions (Figure S1). The two 
exceptions were the years 2010 and 2011, which were included 
with the 1987–1999 group. The next largest CH index solution 
separated out 1987–1988 and 2009–2012 into a third assemblage 
group. This solution, because unequal size groups are underval-
ued (Borcard et al. 2011), was retained for further consideration 
as suggested by Oksanen et al. (2022). Subsequent RDA analy-
ses confirmed it was clearly associated with environmental vari-
ation, so three groups were retained and designated as pre2K 
(1989–1999), pst2K (2000–2020 minus 2009–2012), and trans 
(i.e., transitory, 1987–88 and 2009–2012).

Redundancy analysis (RDA) resulted in a minimum AICc 
model with three environmental variables: the annual AMO 
lagged by 2 years (AMO-2), the average winter NAO lagged 

by 2 years (NAO-2), and the annual AMO (Figure  2, Table  1). 
These three variables explained 45.7% of the total Hellinger 
transformed community variation. All selected environmental 
variables were climatic indices, and notably absent from the for-
ward selection results were any local environmental variables 
such as bottom temperature, chlorophyll a, or dissolved oxygen. 
Excluding all AMO and NAO variables in RDA analysis resulted 
in selecting BT-1, BT-2, and Tchl, but the explained variance was 
only about half as much as when the climatic variables were in-
cluded (24.5% vs. 45.7%).

The AMO-2 and AMO gradient is aligned with the first RDA 
axis and indicated that the clear temporal separation in com-
munity structure found in the K-means analysis was associated 
with below average AMO-2, AMO values during 1987–1999 and 
above average AMO-2, AMO values for 2000–2020 with the ex-
ception of 2010–2011. Bayesian change point regression anal-
ysis of the annual community structure scores along the first 
RDA axis vs. year confirmed two distinct levels in community 
structure with a shift between 1999–2000 (x = 1999.6) and a 95% 
credible interval of (1998.5, 2001) (Figure S2). No overlap in the 
mean RDA scores' credible intervals was found between 1987 
and 999 (x = 0.80, 95% credible interval of 0.57–1.02) and 2000–
2020 (x = −0.50, 95% credible interval of −0.68 to −0.32). This 
community structure change corresponds to a shift in the AMO 
from cold to warm phase that occurred in the mid- to late-1990s 
(Trenberth and Shea 2006). The second RDA axis is primarily 
associated with NAO-2 and a small component of AMO orthogo-
nal to the first RDA axis. The third assemblage group suggested 
by the K-means analysis (trans) is associated with below average 
NAO-2 values and this second RDA axis.

RDA predicted Hellinger transformed annual CPUE fit the ob-
served species data very well (Figure S3). The fit suggests that 
the model created from the three climatic variables was reason-
able in describing the trends seen for individual species. Notable 
changes apparent in the RDA triplot (Figure 2) are species that 
declined after the 1990s (e.g., Winter Flounder, Lady Crab, 
Horseshoe Crab, Windowpane Flounder, Fourbeard Rockling, 
and American Sand Lance), those that increased in the 2000s 
(Bay Scallop, Clearnose Skate, Northern Kingfish, Smallmouth 
Flounder, Black Sea Bass, Scup, Summer Flounder, Hogchoker, 
Spotted Hake, Atlantic Moonfish, Weakfish, and Conger Eel), 
and at least two taxa (Anchovies and Bluefish) associated with 
the second RDA axis and the periods 1987–1988 and 2009–2012. 
Most of these taxa were identified in the Spearman's correlation 
analysis as having a significant correlation between Hellinger 
transformed CPUE and year (Figure S4B).

The empirical variance (γ(h) in Equation 1) increased with time 
interval size, indicating that the community assemblage became 
increasingly different at larger time intervals (Figure S5). There 
was no evidence of a sill or flattening of the empirical variogram 
at large time intervals to suggest a maximum assemblage differ-
ence had been reached.

MSO results indicated that the temporal structure in the fau-
nal data was captured by the explanatory variables selected in 
the RDA and that the residuals contained no trend (Figure S5). 
The variogram formed from RDA predictions (γfit(h)) had an 
evident increasing temporal trend that strongly paralleled the 

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71637 by T

est, W
iley O

nline L
ibrary on [21/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 15 Ecology and Evolution, 2025

shape of the empirical variogram, suggesting that the func-
tional form of the RDA model was not misspecified. Points in 
the variograms formed by the sum γfit(h) + γres(h) lay within 
the Bonferroni-corrected point confidence envelope around 
γ(h), indicating that there were no problems with scale depen-
dence in the biotic-environmental relationships. The variogram 
of γres(h) was flat, signifying that the stationarity assumption 
was met and no unknown environmental factor(s) was present 
influencing the temporal structure of the residuals. In addition, 
Bonferroni-adjusted Mantel tests between residuals and time 
intervals were non-significant, excluding the possibility of au-
tocorrelated residuals.

3.2   |   Temporally Averaged Spatial Variability

Spatial analysis revealed three geographic groups of grid units 
distinguished by differences in local environmental character-
istics. After averaging across years, the CH-index solution for 
K-means cluster analysis separated the grid units into three dis-
tinct groups (Figure  S6) with a coherent geographic structure 
(Figure 3). These three regional groups were designated as east-
ern, inshore, and offshore based on their geographic locations, 
although this designation has some grid unit exceptions. The 
CH-index for two groups was almost identical to the maximum, 
but it grouped eastern and offshore together. The geographic co-
herence of the eastern group suggested that it should be consid-
ered a separate assemblage.

Redundancy analysis (RDA) resulted in a minimum AIC model 
with five environmental variables: bottom salinity (Sal), dis-
solved oxygen percent saturation (DOSat), starting depth of 
the trawl (Depth), change in depth during the trawl sample 
(delDepth), and Secchi depth (Figure 4, Table 1). The five envi-
ronmental variables explained 50.8% of the total Hellinger trans-
formed community variation, and regional comparisons of these 
factors are found in Figure S7. Notably absent from the forward 
selection results was a local temperature variable or chlorophyll 
a. The RDA analysis identified species associated with the three 
geographic regions. These included Scup, Spider Crab, Black 
Sea Bass, and Inshore Lizardfish in the eastern assemblage, 
Atlantic Silverside and Northern Pipefish in the inshore assem-
blage, and Weakfish, Squid spp., and Butterfish offshore. RDA 
predicted Hellinger transformed annual CPUE fit the observed 
grid unit data reasonably well (Figure S8). The predicted vs. ob-
served plots of many species (e.g., SpidCrab, AtlaSilver, BayScal, 
AnchSpp, Buttrfsh, HorsCrab, Squispp) followed the 1:1 line 
closely, but tended to underestimate some of the largest observed 
values. Some species were less well predicted (e.g., AmerLobs, 
BlackDrum, BlueRunn, FourFlou, HardClam, MoonSnal), but 
these tended to have 50 or more zero-grid values across the 76 
grid units.

MSO results indicated that the spatial dependence in the faunal 
data was captured by the explanatory variables selected in the 
RDA, and that the residuals contained no detectible spatial struc-
ture (Figure S9). The variogram formed from RDA predictions 

FIGURE 2    |    Redundancy Analysis (RDA) of spatially averaged temporal patterns in community structure. The first two RDA axes are plotted. 
The points are annual community structure scores derived from Hellinger transformed average CPUE species scores. Envelopes drawn around 
points designate groups identified in the K-means cluster analysis. The blue arrows represent species and the red arrows represent environmental 
variables. The arrows characterize the direction of steepest increase for the species or quantitative environmental variable. The origin is the mean of 
the variable and decreasing values extend through the origin in the direction opposite the head of the arrow. Only the environmental variables that 
were included in the minimum AICc model are plotted. The number of species plotted was reduced for clarity.
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γfit(h) had evident spatial structure at all sites and strongly par-
alleled the shape of the empirical variogram, suggesting that the 
functional form of the RDA model was not misspecified. Points 
in the variogram formed by the sum γfit(h) + γres(h) lay within 
the Bonferroni-corrected point confidence interval around γ(h), 
indicating that there were no problems with scale dependence 
in the biotic-environmental relationships. The variogram of 
γres(h) leveled off after the first distance interval (1400 m), and 
while it fluctuated a small amount (< ±10%), it did not continue 
to increase with distance class, indicating that the stationarity 
assumption was met and no unknown environmental factor(s) 
was present influencing the spatial structure of the residuals. 
In addition, Bonferroni-adjusted Mantel tests between residuals 
and a geographic distance matrix at each distance class interval 
were non-significant, excluding the possibility of autocorrelated 
residuals.

3.3   |   Temporal Changes Within Geographic 
Regions (Eastern, Inshore, Offshore)

Analysis of the temporal changes in each geographic region 
(eastern, inshore, and offshore) by RDA confirmed that the 
1999–2000 regime shift occurred system-wide and that the same 
climatic drivers were involved (Figure  5). It also confirmed 
the separation of the trans periods (1987–1988, 2009–2012) as 
a separate group associated with the second RDA ordination 
axis. The AMO-2 and AMO gradient again dominated the first 
RDA axis separating pre2K and pst2K years. Bayesian change 
point analysis of sample scores along the first RDA axis vs. year 
confirmed two distinct levels in community structure with an 
estimated shift essentially at the same time in the eastern (x 
= 1999.0, 95% credible interval of 1997.1–2000.0), inshore (x 

TABLE 1    |    RDA forward selection results, eigenvalues, and AICc for each temporal, spatial, and combined analysis.

Analysis Variable selected Eigenvalue ∑ Eigenvalues AICc

Spatially averaged temporal variability AMO-2 0.262 0.262 −93.766

NAO-2 0.099 0.361 −96.084

AMO 0.096 0.457 −98.856

PerHyp 0.036 0.493 −98.220

Temporally averaged spatial variability Sal 0.197 0.197 −266.062

DoSat 0.194 0.391 −284.849

Depth 0.057 0.448 −290.023

delDepth 0.038 0.486 −293.084

Secchi 0.022 0.508 −293.979

Chla 0.010 0.518 −293.037

Temporal changes in geographic regions

Eastern AMO-2 0.312 0.312 −97.970

NAO-2 0.072 0.384 −99.149

AMO 0.075 0.459 −100.800

Secchi 0.049 0.508 −101.060

PerHyp 0.043 0.551 −100.973

Inshore delDepth 0.302 0.302 −94.047

AMO-2 0.101 0.403 −96.782

NAO-2 0.077 0.480 −98.714

AMO 0.046 0.526 −98.895

PerHyp 0.053 0.579 −99.729

Depth 0.035 0.614 −99.228

Offshore AMO-2 0.238 0.238 −91.560

NAO-2 0.115 0.353 −94.543

AMO 0.094 0.447 −97.117

Depth 0.049 0.496 −97.303

PerHighT 0.029 0.525 −96.121

Note: Minimum AICc values are indicated in bold. Environmental variables are listed in order of selection. Eigenvalues represent the fraction of variance explained.
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8 of 15 Ecology and Evolution, 2025

= 2000.2, 95% credible interval of 1999.0–2001.8), and offshore 
(x = 1999.5, 95% credible interval of 1999.0–2000.8) regions. 
As in the case of the full data set, there was no overlap in the 
mean RDA scores' credible intervals between 1987–1999 and 
2000–2020 for any region. A gradient in NAO-2 separated out 
the trans years as a group, with no overlap between them and 

either pre2K or pst2K years (Figure 5). In addition to the cli-
matic drivers, the minimum AICc solution in the forward se-
lection analysis included Secchi depth for the eastern region, 
the change in depth between the start and end locations of the 
trawl (delDepth) and the percent of hypoxic events (PerHyp) for 
the inshore region, and the starting depth of the trawl (Depth) 

FIGURE 3    |    K-Means cluster analysis of temporally averaged grid unit community structure data. Groups are designated as eastern (black circles), 
inshore (green triangles), and offshore (purple squares).

FIGURE 4    |    Redundancy Analysis of temporally averaged spatial community structure. The points represent grid unit community structure 
scores derived from Hellinger transformed average CPUE species scores. Envelopes drawn around points designate grid-unit groups identified in the 
K-means cluster analysis. See Figure 2 caption for further details on interpretation.
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for the offshore region (Table 1). Although some local environ-
mental variables were chosen in the forward selection analysis 
of the regions, notably absent were common habitat variables 
like temperature, salinity, or chlorophyll a. Explained variation 
in each regional analysis ranged from 50%–58% (Table 1) and 
exceeded the explained variance in the spatially averaged tem-
poral analysis (46%) with all three regions combined. MSO re-
sults (Figure S10) were similar to the temporal analysis with all 
regions combined (Figure S5).

3.4   |   Temporal Changes Within Grid Units

Expanding the multivariate analysis to the grid unit scale 
(34 years × 76 grid units) increased sums of squares variability 
by two orders of magnitude over previous analyses, decreased 
the proportion of variance explained by environmental vari-
ables in the RDA, but provided no surprises in the explanatory 

variables selected. Forward selection RDA with all of the 
environmental variables explained about 31.2% of the total 
Hellinger transformed community variation. The leading 
variables selected in order included AMO lagged by 2 years 
(AMO-2, 11.9%), starting depth of the trawl (Depth, 4.7%), 
AMO (3.8%), NAO lagged by 2 years (NAO-2, 3.8%), bottom 
salinity (Sal, 1.8%), change in depth during the trawl sample 
(delDepth, 1.3%), and Secchi depth (Secchi, 1.1%). All other 
variables added together into the analysis increased the ex-
plained variance by less than 3%. RDA using the interactions 
between the three temporal periods (pre2K, trans, pst2K) and 
three regional areas (eastern, inshore, and offshore) as cate-
gorical variables (i.e., E-pre2k, E-tran, E-pst2K, I-pre2K, I-
tran, Ipst2K, O-pre2K, O-tran, O-pst2K) explained 38.7% of 
the Hellinger transformed community variation. Thus, the 
earlier identified temporal and spatial structure better ex-
plained community variability at this level than the original 
quantitative variables.

FIGURE 5    |    Redundancy Analysis of annual variability for the (A) eastern, (B) inshore, and (C) offshore regional grid-unit groups. Envelopes and 
symbols delineate pre2K (1989–1999), trans (1987–1988, 2009–2012), and post2K (2000–2008, 2013–2020) periods. See Figure 2 caption for further 
details.
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4   |   Discussion

The predominant feature characterizing the fish and mobile 
invertebrate community in the Peconic Estuary was a regime 
shift that occurred in 1999–2000 and was directly driven by 
sea surface temperature changes associated with the Atlantic 
Multidecadal Oscillation. Based on their orientation along the 
first RDA axis and the Spearman's correlation analysis with 
year, this shift involved changes in at least 18 taxa, with de-
creased CPUE in Winter Flounder, Lady Crab, Horseshoe Crab, 
Windowpane Flounder, Fourbeard Rockling, and American 
Sand Lance (Figures  2, S3, S4B, Table  S2). Increased CPUE 
was found for Bay Scallop, Clearnose Skate, Northern Kingfish, 
Smallmouth Flounder, Black Sea Bass, Scup, Summer Flounder, 
Hogchoker, Spotted Hake, Atlantic Moonfish, Weakfish, and 
Conger Eel.

While some of the species' changes may be due to a direct ef-
fect of temperature on physiological processes, it is likely that 
most changes were the result of complex population processes 
and the interplay between migration, spawning, and species 
interactions. Changes in temperature can induce early or late 
migratory and spawning behavior and changes in the timing 
and duration of larvae in different species (Sims et al. 2004; 
Fincham et al. 2013; Witting et al. 1999; Asch 2015; Slesinger 
et al. 2021). Since the Peconic Estuary is a temperate system 
and is extensively used by migratory species, changes in the 
timing of different species migrations and spawning could 
have top-down or bottom-up effects, resulting in shifting tem-
poral overlaps of predator–prey species. For example, Winter 
Flounder, Windowpane Flounder, Summer Flounder, and 
Smallmouth Flounder all changed in CPUE across the regime 
shift, and they utilize the Bay at different times and for dif-
ferent aspects of their life history. Winter Flounder spawn in 
estuaries in the late winter to early spring (Fahay 1983; Ziegler 
et al. 2019). Their eggs and larvae are demersal and present in 
the early spring. Windowpane Flounder spawn in both estu-
ary and coastal ocean areas from spring to fall, producing two 
cohorts: (1) a spring-spawned cohort whose larvae are found 
in both the estuary and in the coastal ocean and (2) a fall-
spawned cohort whose larvae are primarily in the ocean (Able 
et al.  2006; Witting et al.  1999). They have pelagic eggs and 
larvae (Fahay 1983; Witting et al. 1999). In contrast, Summer 
Flounder and Smallmouth Flounder spawn in the ocean, and 
larvae are either transported into the Bay or they enter as ju-
veniles (Witting et  al.  1999). Summer Flounder spawn from 
fall into winter as adults travel from inshore to offshore areas 
(Fahay 1983; Witting et al. 1999). Eggs and larvae are pelagic, 
and larvae are present in bays during fall–winter (Witting 
et  al.  1999). Late juveniles and adult Summer Flounder are 
present in the Bay during summer and fall and are com-
mon predators of Winter Flounder young-of-the-year (YOY) 
(Frisk et al. 2018; Taylor et al. 2019). Their occurrence over-
laps with YOY Winter Flounder and Windowpane Flounder. 
Smallmouth Flounder spawn in the coastal ocean from sum-
mer to fall, with a peak in July–October (Fahay 1983). They 
have pelagic eggs and larvae, and larvae enter estuaries in 
the fall. Winter Flounder prey on YOY Smallmouth Flounder 
(Collette and Klein-MacPhee 2002). For this group of species, 
therefore, temperature can shift migration patterns, spawn-
ing, and larval distributions in space and time, which in turn 

can influence predator–prey interactions, inducing shifts in 
the trophic dynamics. In addition, warming conditions can 
have complicated impacts on species. For example, the Black 
Sea Bass population has shifted to higher latitudes, but in 
these regions, the species has a shorter spawning season and 
lower gonadosomatic index, suggesting the potential for lower 
recruitment (Slesinger et al. 2021).

Curiously, even though local bottom temperature increased 
by 1.7°C during the study period (Figure  S11), it was never 
selected as an important driver in any RDA analysis. Instead, 
AMO and lagged versions of AMO and NAO (AMO-2 & 
NAO-2) were selected. Time lags are a common feature of re-
gime shifts since it takes time for the ecosystem to respond 
to environmental change (Báez and Real  2011; Beaugrand 
et  al.  2015; Conversi et  al.  2015). The correlation between 
bottom temperature and AMO was weak but significant 
(Spearman, r = 0.41, p = 0.015) and between NAO was nonsig-
nificant (r = −0.06, p = 0.739). Removing all AMO and NAO 
variables in the RDA analysis resulted in selecting BT-1, BT-2, 
and chlorophyll a but the explained variance was almost half 
as when the climatic variables were included. Average annual 
bottom temperature, therefore, modulated the climatic driv-
ers and was a less effective measure than AMO. This outcome 
also suggests that the processes affecting the community as-
semblage operated at a regional rather than local scale. Given 
the transient nature of the ecosystem, it is not surprising that 
regional drivers are important as they cue movement of mi-
gratory species that also tend to have top-down effects on 
systems.

Secondarily, NAO was associated with community assem-
blage changes that were of shorter duration and occurred 
twice: 1987–1988 and 2009–2012. The negative phase of NAO, 
suppressing westerlies and otherwise impacting wind direc-
tion and intensity, the latitude of the Gulf Stream, mixed layer 
depth, and other factors (Taylor and Stephens 1998), was as-
sociated with high CPUE of Anchovies and probably Bluefish. 
Both Anchovies and Bluefish are coastal ocean spawners 
whose early life stages make extensive cross-shelf migra-
tions. Bluefish eggs and larvae are pelagic and larvae tend to 
occur between the surface and about 4 m depth (Shepherd and 
Packer 2006). Larval migration is facilitated by wind-driven 
surface currents, warm-core ring streams, and Gulf Stream 
filaments (Munch and Conover  2000; Hare et  al.  2001). The 
pelagic juvenile stage makes an extensive cross-shelf migra-
tion to enter estuaries. Anchovies spawn in the spring and 
summer, and they have pelagic eggs and larvae (Fahay 1983). 
Juveniles are found in estuaries in the summer but make win-
ter migrations to the ocean (Munroe  2002). Adults occur in 
estuaries, the coastal ocean, and offshore to the Gulf Stream 
(Munroe 2002). Juveniles and adults are planktivores. A sim-
ilar negative relationship between NAO and anchovies has 
been documented previously by Baez and Real  (2011), who 
found that landings of the anchovy Engraulis encrasicolus in 
the Gulf of Cadiz were higher during a previous year negative 
NAO phase.

The 1999–2000 event and the 1987–1988 and 2009–2012 events 
appear to involve different drivers (AMO vs. NAO), different 
species, and likely different mechanisms. The climate drivers 
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appear to act independently as the NAO-induced 1987–1988 
shift occurred during a cool AMO phase and the 2009–2012 
shift during a warm AMO phase. All of these events fall 
within the definition of an “abrupt community/ecosystem 
shift” (ACS) as described by Beaugrand et  al. (2008) and 
Beaugrand (2015). Their theory suggests that an ACS results 
from individual responses of species to a climate-induced en-
vironmental change. This shift may not involve all species 
and may indirectly affect some species through trophic inter-
actions. Beaugrand (2015) indicated that a step-wise shift may 
be detected as a change along a PCA axis, as observed in the 
present study. Further Bourgrand (2015) regarded a regime 
shift as a special case of ACS.

Mollmann et al.  (2015) in the same theme issue as Beaugrand 
et al. (2015) defined regime shifts as “dramatic, abrupt changes in 
the community structure that are persistent in time, encompass-
ing multiple variables, and including key structural species—in-
dependently from the mechanisms causing them”. Under this 
definition, the 1999–2000 shift observed in this study qualifies 
as a regime shift. It was clearly “abrupt” and “persistent in time”, 
with the 1999–2000 shift prominent in both the K-means and 
RDA analyses, identified in the change point analysis of the first 
RDA axis, and marking a separation in the finfish and mobile 
invertebrate community from a decade before to at least a de-
cade after. The shift encompassed “multiple species” (at least 
18) and included “key structural species” (e.g., complex trophic 
interactions between Winter Flounder, Windowpane Flounder, 
Summer Flounder, and Smallmouth Flounder as noted earlier). 
As far as being “dramatic”, it should be mentioned that in the 
RDA analysis, both AMO and the time delayed AMO-2 were 
selected to explain changes along the 1st RDA axis. With both 
present, differential effects that depend on the relative weighting 
of the two variables on each individual species would distribute 
CPUE changes across multiple years, strongly suggesting that 
complex effects on age-structure, migration, spawning, and spe-
cies interactions were involved. Despite these species-specific 
differential effects, the 1999–2000 event was the most distinct 
temporal shift in the data set and indicates the value of a long 
monitoring study in assessing community change.

The primarily NAO-induced shifts of 1987–1988 and 2009–2012 
fit the Mollmann et  al.  (2015) definition except for the “per-
sistent in time” phrase. Although more limited in temporal 
extent and number of species involved, these NAO-induced 
events are clearly climate driven. It is important to note that the 
Mollmann et al. (2015) definition does not include a requirement 
for alternative stable states as suggested in earlier investigations 
(e.g., Scheffer and van Nes  2004). The events in the present 
study strongly suggest that the persistence of the climate driv-
ers maintain the community changes and that the community 
assemblage would not continue in the new structure without 
the forcing, as might be expected if alternative stable states were 
present.

Given the regional nature of the drivers associated with the ob-
served community shifts, a similar pattern would be expected to 
be present in other local marine systems. This is in fact the case 
as reported by Howell and Auster (2012) for Long Island Sound 
and Collie et al.  (2008) for Narragansett Bay. Using data from 
a trawl survey conducted in the Spring and Fall between 1984 

and 2008, Howell and Auster (2012) reported a shift from “cold-
adapted” species to “warm-adapted” species at about 1998–1999 
and attributed it to increased bottom water temperatures. Their 
shift was identified by non-metric multidimensional scaling, 
a multivariate ordination technique, and the community shift 
was distinctly evident only in the Spring samples. Eighteen of 
49 species had significant trends at non-Bonferroni corrected 
values of p < 0.01 in Spring and/or Fall based on the regres-
sion slope of the log mean CPUE vs. year. Several of the spe-
cies identified as changing CPUE in the present study were 
identified in Howell and Auster (2012) as well. These included 
declines in Windowpane Flounder, Winter Flounder, and 
Fourbeard Rockling, and increases in Black Sea Bass, Scup, 
Smallmouth Flounder, Spotted Hake, and Summer Flounder. 
Howell and Auster (2012) did not include American Sand Lance 
or Anchovies in their study because they were undersampled 
in their trawl gear. The latter was the principal taxa driven by 
NAO-induced changes in the present study. They also did not 
include invertebrates. Notably, a widespread die-off of American 
lobsters occurred in 1999–2000 in Long Island Sound and the 
population has failed to recover (Lopez et al. 2013). Increased 
bottom water temperature has been implicated in this die-off, 
and the timing suggests that this event could be related to AMO-
induced changes.

Collie et al.  (2008) examined trawl survey samples collected 
from 1959 to 2005 at two locations in Narragansett Bay and 
found a progressive shift from vertebrates to invertebrates and 
from benthic to pelagic species. Analysis of temporal patterns 
in the community by non-metric multidimensional scaling 
suggested clusters of years on a decadal scale. Nonparametric 
Mantel tests comparing matrices of single environmental vari-
ables to the community dissimilarity matrix found the stron-
gest correlations with surface temperature and chlorophyll 
a, moderate correlations with NAO, and nonsignificant cor-
relations with AMO. Surface temperature was used instead of 
bottom temperature in their study because of missing data in 
the bottom time series, and surface temperature, NAO, and 
AMO were lagged 0, 1, and 2 years in their analysis. These 
correlation results were opposite to the trend for the present 
study where the strongest relationship in RDA analysis of 
the temporal data was for AMO-2, NAO-2, and AMO. In the 
present study, bottom temperature and chlorophyll a were se-
lected in the RDA analysis only when AMO and NAO vari-
ables were deleted, and the explained variance when using the 
local environmental variables was half that of climate vari-
ables. Since the Collie et  al.  (2008) time series was 47 years 
in length and ended in 2005, there would be little chance of 
detecting the regime shift that would have occurred in 1999–
2000, since the post-shift record was too short. Still, the 1990s 
and 2000–2005 years cluster as non-overlapping groups in 
their ordinations for both sampling locations, so their results 
are consistent with the present study. In addition, Anchovies 
were not included in their analysis, so the NAO-induced ACS 
of 1987–1988 and 2009–2012 observed in the present study 
would not have been detected by them.

Spatially, community structure variation was associated with 
the local factors bottom salinity (Sal), water depth (Depth), 
DO percent saturation (DOSat), the depth gradient during 
the trawl (delDepth), and Secchi depth (Secchi). The Peconic 
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Estuary ecosystem is a west to east estuary with the largest sur-
face freshwater source, the Peconic River, located to the west. 
Substantial freshwater also enters the system along the entire 
west–east extent through groundwater flow (Schubert  1998) 
and storm water runoff. Interestingly, while the K-means 
analysis differentiated the eastern part of the study area from 
the rest of the system, there was no other west–east grouping 
of sampling stations based on community structure. Instead, 
the K-means analysis differentiated between inshore and 
offshore locations outside of the eastern area. This probably 
reflects the substantial input of freshwater from runoff and 
groundwater flow from the land. This interpretation is con-
sistent with the average salinity of the three regions with the 
highest salinity in the eastern region, intermediate salinity 
offshore in the western part of the system, and lowest salin-
ities inshore (Figure S7).

The present study used a forward selection regression approach 
to identify the important local and regional environmental driv-
ers of community structure in a large-scale, temporally exten-
sive monitoring data set. Comparison of this approach to Cloern 
et al. (2010) and Hughes et al. (2015) suggests there are several 
regression-based approaches available to analyze large ecologi-
cal data sets. Cloern et al. (2010) used two approaches to relate 
a fish and mobile invertebrate time series to the Pacific Decadal 
Oscillation (PDO) and the North Pacific Gyre Oscillation 
(NPGO). In the first, they created a community index from the 
first principal component (PC1) of an eighteen-species fish and 
mobile invertebrate CPUE data set. They then developed an 
autoregressive model of order 1 to reconstruct PC1 with NPGO 
forcing. In the second, they related single species annual catch 
data to PDO and NPGO, individually or together. They found 
that inclusion of time lags optimized fits, and at least for several 
species, the most prominent change in catch occurred around 
2000 linked to sign reversals in PDO and NPGO. Hughes 
et al. (2015) used sequential (i.e., forward selection) logistic re-
gression to relate presence-absence of two species of flatfish in 
shallow and deep nursery areas to local (temperature, salinity, 
sampling effort, dissolved oxygen [DO]) and regional (upwell-
ing, El Nino Southern Oscillation [ENSO], and PDO) factors. 
Their analysis suggested that DO was the only consistent factor 
that explained flatfish presence in both nursery areas. They then 
used structural equation modeling to test hypothetical linear 
relationships between DO and potential forcing variables, find-
ing that El Nino conditions and upwelling operated indirectly 
through changes in temperature, salinity, and precipitation to 
alter hypoxic conditions. Additionally, Hughes et al. (2015) used 
backward selection to relate flatfish recruitment and landings 
to one-year lagged hypoxic conditions in the nursery area, up-
welling, DO, PDO, NPGO, and ENSO. This analysis found that 
hypoxia in the nursery habitat was the strongest factor. A more 
detailed comparison of similarities and differences between 
these studies is included as Table S3. Examined together, these 
three studies highlight the value of extensive monitoring data 
sets and the importance of including regional forcing to fully 
quantify ecological relationships.

At first sight, the fraction of explained variation in the com-
munity structure obtained in the RDA analyses, ranging from 
0.46 to 0.56 (Table 1), seems modest. These values are, however, 
comparable to those obtained by Flanagan et al. (2018) for RDA 

analyses of benthic fauna at five regional sites (0.42–0.52) using 
similar methods. In their study, Flanagan, et al. evaluated the 
amount of small-scale heterogeneity in the benthic communities 
by fitting models to empirical variograms of the data. They found 
that 36%–59% of the total variation in the benthic communities 
represented small-scale patchiness at a scale below the smallest 
sampling interval, and once adjusted for this patchiness, > 71% 
of the remaining variance was explained by the environmental 
variables selected in the RDA analysis. In the present study, this 
small-scale patchiness represents intra-annual and intra-grid 
unit variability. While variogram models were not fit to the em-
pirical variogram data in the present study, similar results would 
be expected, suggesting that the environmental variables chosen 
are explaining a substantial amount of the temporal and spatial 
community structure present in the Peconic Estuary system. 
Other indicators include the flatness of the residual variance in 
the variogram plots (Figures S5, S9, and S10), the fact that the 
confidence intervals for the empirical variograms do not include 
zero near the origin of the plots indicating substantial small-
scale heterogeneity, and the other diagnostic results reported. It 
should be noted that only when annual changes within all grid 
units were analyzed (34 years × 76 grid units), increasing vari-
ability in the data by two orders of magnitude, did the amount of 
explained variation fall below 40% in the RDA analyses.

The temporal and spatial patterns in community structure 
identified in the present study clearly frame the next steps that 
could be used to examine whether environmental changes have 
increased the vulnerability of individual finfish and mobile 
invertebrate species, community assemblages, and ecosystem 
properties. Information on the vulnerability of individual species 
and species assemblages can be obtained by examining how they 
alter their spatial distribution and habitat utilization in response 
to environmental change using techniques in Frisk et al. (2011). 
Linking spatial–temporal patterns to metrics derived from eco-
logical relationships, such as life history characteristics (e.g., 
longevity, growth, and age at maturity), fishery status, level of 
exploitation, temperature tolerance, and migration patterns can 
add valuable information on vulnerability (Frisk et al. 2011). At 
the ecosystem level, Ecopath and its time and spatial varying 
companions, Ecosim and Ecospace, are quantitative model-
ing frameworks that represent all major ecosystem functional 
groups (Christensen and Pauly 1992; Pauly et al. 2000) and can 
be used to identify and assess structural changes in the ecosys-
tem in response to environmental change (Odum 1971; Libralato 
et al. 2006; Christensen et al. 2009; Nuttall et al. 2011). They can 
be used to examine structural changes with particular attention 
to the temporal and spatial patterns identified. In addition, tem-
poral changes in indices derived from cumulative biomass vs. 
trophic level and cumulative production vs. cumulative biomass 
curves can be used to assess periods of perturbation and recov-
ery as proposed by Link et al. (2015).

Results of this study have several important conservation and 
management implications. First, abrupt community/ecosystem 
shifts (ACS), including a regime shift in 1999–2000, occurred in 
the Peconic Estuary community assemblage on a decadal time 
scale and these temporal changes were driven more by regional 
rather than local environmental drivers. Climate drivers caus-
ing abrupt changes were evident in the multivariate analysis, 
but local gradual or abrupt, natural or anthropogenic influences 
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were not implicated in the temporal patterns for this ecosystem. 
No temporal trend or pattern was present in the RDA residuals 
after removing the effect of the climate drivers (Figure S5), sug-
gesting that no major environmental driver was missed in the 
analysis. Second, regime shifts and other climate-induced ACS 
events may not be accompanied by large, broad-scale alterations 
of all parts in the ecosystem. The 1999–2000 regime shift, while 
clearly evident, involved about 18 of the 69 taxa examined. The 
trans periods (1987–1988 and 2009–2012) were marked by dis-
tinct changes in only those species that made large cross-shelf 
migrations during early life stages. These results suggest that 
climate-induced changes may require the analysis of extensive 
monitoring data to confidently detect and quantify their effect 
on the ecosystem.

Third, spatial habitats with different species assemblages were 
present (eastern, inshore, and offshore), but all three regions re-
sponded in a similar way in time to the climate drivers. These 
regions were characterized by differing Hellinger transformed 
CPUE in species such as Scup, Spider Crabs, and Black Sea Bass 
(eastern), Atlantic Silversides and Northern Pipefish (inshore), 
and Weakfish (offshore) (Figure  4). Not finding a strong west 
to east gradient in species assemblages was surprising, but the 
distinction between inshore and offshore regions is useful infor-
mation for managers. For example, Suffolk County Department 
of Planning (2008) excluded areas within 1000 ft (305 m) of mean 
high water from development of shellfish aquaculture lease areas 
for various socio-economic and environmental reasons. This re-
striction has additionally protected this distinct inshore fish and 
mobile invertebrate habitat. Given that the fauna analyzed are 
mobile, finding a similar regional community response in time 
to the climate drivers is a reasonable outcome. Since region-
specific assemblages are responding in a similar way (Figure 4), 
conservation and management decisions can be applied system-
wide and not restricted to specific geographic areas.

Finally, this study suggests that the response of the system to 
climate-induced changes is predictable as long as extensive, up-
to-date monitoring data remain available. Given that time lags 
are present in the system response, changes can be anticipated. 
Models along the line of the RDA analyses developed here, or 
more sophisticated and more general ecosystem models, are 
tools that can potentially be used effectively to scale the magni-
tude of the response to ACS events. Anticipating the occurrence 
of ACS events and estimating the scale of system response can 
lead to the development of more effective conservation and man-
agement strategies.
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